

Commercial Vehicle Lifecycle Brake Performance: How It Impacts Roadway Safety

July 31st, 2018

Agenda

- Key Safety Decision Points
 - Air Disc Brake vs. Drum Brake
 - Aftermarket Safety Impacts
- Vehicle Brake Performance (Lifecycle)

Keith McComsey
Director of Marketing / Customer Solutions
Bendix Spicer Foundation Brakes
Keith.McComsey@Bendix.com

Vehicle Stopping Power

80k GCWR stopping from 60-0 mph

Stopping Power Calculation

(2) Key Decision Points Impacting Safety

1) Vehicle Specification Impact on Safety

- Date of Manufacture: All Vehicles meet FMVSS-121
 - Meet Reduced Stopping Distance (RSD) Tractor units since 2013 (Ph-2)
 - 250 feet (at 60mph)
- Vehicles brake specifications vary
 - Tractor / Truck
 - Trailer
- Brake Performance (varies)
- Driver Familiarity (varies) (not married to vehicle)

Again All meets current regulation requirements At Manufacture

Brake System Choices

Air Disc Brakes (Lower Total Cost of Ownership)

■ 1.5x Longer Pad Life

- Fleet opportunity to eliminate a friction change
- Lower Maintenance Cost
 - 1/4th Friction change time of Drum

Don't let rust jacking shorten service life.

Eliminates Rust Jacking

- Improves CSA scores
 - Out-of-Service as result of Brakes out of Adjustment

Brake Performance Differences (Brake Steer)

- Brake Steer
 - Torque imbalance across the axle
- Torque imbalances produce:
 - Steer at steer axle
 - Yaw (pull) at the drive axles
- Air Disc Brakes virtually eliminate brake steer conditions
- Providing Smoother / Straighter / Safer Stops

Brake Performance Differences (Stopping Distance)

- Higher speeds generate longer stopping distances
- Not linear !!!
- Kinetic Energy= 1/2•mass•velocity²
- Energy dissipated as heat

What combination is behind you ???"

Brake Performance Differences (Brake Fade)

- Multiple and/or Harder brake stops generate more heat
- Heat dissipates into brake system mass
 - Drum: Friction, Brake Shoes, Drum, etc.
 - ADB: Friction, Pads, Rotor, etc.
- Brake System Designs differ:
 - Drums expand away from friction
 - Produces **Longer** stopping distances
 - Inconsistent brake performance (to driver)
 - ADB rotors expand towards friction
 - (Maintains <u>Consistent</u> stopping distances)

2) Aftermarket Components Impact on Safety

- Typical considerations made when replacing friction:
 - What Geometry / FMSI?
 - Inventory availability
 - -6x4 Pricing
 - Non-RSD (\$300) -
 - RSD (\$400)

6x4 Configuration.: \$100 Difference

- Brake Performance (increased variation)
 - Brake performance will vary / Wider scope of friction choices
 - Non-RSD Friction: RSD stopping distance (Non-Compliant)
 - RSD Friction: (Compliant) additionally more fade resistant
- Driver Familiarity
 - Are they married to vehicle?
- What performance requirements does the AM follow?

2) Aftermarket Components Impact on Safety

AM Perceptions:

- Non-RSD AM replacement shoes are acceptable replacements
 - Regardless if they are RSD manufactured tractors
- RSD ONLY applies to OEM manufactures
- DO NOT understand FMCSA 393.40(b)(2)
 - FMCSA 393.40(b)(2)
 - Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and manufactured on or after March 1, 1975, and trailers manufactured on or after January 1, 1975, must, at a minimum, have a service brake system that meets the requirements of FMVSS No. 121 in effect on the date of manufacture.
- Identification? / Enforcement?

Pre-Trade-In / Post Trade-In:

- 50% Min. Lining Requirement: Fleet replaces w/ low cost friction
- Traded-As-Is: Dealer may replace with low cost friction

2) Aftermarket Components Impact on Safety

Impacts to non-RSD choices

- Longer Stopping Distances
- Non-Compliance to FMCSA
- Accident Liability

Brake Performance Diminishes:

- As soon as 1st Owner replaces friction
- Continued Cycle for vehicle life
- 2nd, 3rd, etc. Owners unaware

Vehicle Life-Cycle of Degrading Brake Performance

OEM RSD vs. Typical AM Non-RSD Performance

- Conducted FMVSS-121 Stopping Distance Test
- Configurations:

Configuration	Front Axle	Drive Axles	GCW
OEM Friction (5.5")	13,440 lbs.	39,620 lbs.	47,504 lbs.
AM Non-RSD Friction (5.5")	13,340 lbs.	39,820 lbs.	47,502 lbs.

- Transportation Research Center (TRC) in Ohio
 - 4-Mile Skid Pad
 - 8 Minute Cycle Times

OEM RSD vs. Typical AM Non-RSD Performance

OEM RSD vs. Typical AM Non-RSD Performance

Similar Safety Impact in AM (even with ADB)

- Industry Perceptions about Air Disc Brakes:
 - Stop Shorter
 - Eliminate Brake Fade
 - Eliminate Brake Steer
 - Require Less Maintenance
- ONLY if replaced with "Like-for-Like" in the AM
 - Due to rigorous testing
- ADB Aftermarket at risk of following current AM drum friction practices
 - Pressure to reduce ADB AM costs
 - AM Components in most cases DO NOT follow same test protocol

Similar Safety Impact in AM (even with ADB)

AM Pad Stopping Distance:

- Genuine OEM Replacement Pads maintain the original OE performance
- Other AM Pad choices can increase stopping distance by over 50 feet.
- Industry perception is ... ADB stops shorter !!!!

Source: 2015 Bendix testing. Stopping distances are simulated based on FMVSS-121 Hot Stop and Recovery Dynamometer Simulation.

Similar Safety Impact in AM (even with ADB)

AM Pad Park Capability:

- Genuine OEM replacement pads: Exceed the FMVSS-121 park requirement
- Typical AM replacement pads: May demonstrate a reduced park-hold capability
- Risk: Roll-Away

Bendix pads versus typical affermarket pads. Source: 2015 Bendix testina.

Diminished Vehicle Brake Performance Trend (Lifecycle)

Summary

(2) Key Decision Points that define vehicle brake safety

- Vehicle Specifications
 - Brake Steer vs. Non-Brake Steer effect
 - Stopping Distance Delta (Cold): 20-25 feet
 - Brake Fade Impact to Stopping Distance (Hot): (add'l 50 feet)
 - While Compliant / Maybe be up to 70 feet different / Less Consistent (affecting CMS)

- Friction Replacement in the AM (not replacing "Like-for-Like)":

- Stopping Distances increase: (by up to 80 feet) / Saved \$100
- Increased Brake Fade / Inconsistent Stopping Distances
- Reduced Park-Hold / Risk of Roll-Aways

■ Lifecycle Brake Performance trending across the Industry

- Stopping Distances could vary anywhere from 200' to 355'
- Incrementally increase with speed and heat

Thank you!!

Keith McComsey
Director of Marketing / Customer Solutions
Bendix Spicer Foundation Brakes
Keith.McComsey@Bendix.com